電解質を固体にしたのが全固体電池 電解質とは、電気を帯びたものから、電気の基となるイオンを分離し、移動させる作用を促す物質をいう。つまり、バッテリーの電極からイオンを分離する働きがある。 一般に、バッテリーの電解質は液体で、クルマの補器を動かす鉛酸バッテリーも、希硫酸の電解液によって鉛合金の電極を化学反応させ、イオンを分離して電子の移動が起き、電気が流れる。 リチウムイオンバッテリーは、リチウムのイオンが移動するだけで電気が流れる仕組みで、電極の物性は変化しない。リチウムイオンの移動を促すのが電解質で、リチウムイオンバッテリーもこれまでは液体または粘性を持つゲル状だった。この電解質を、無機物の固体にしたのが全固体電池だ。電極も固体、電解質も固体(液体率が0%)なので、すべてが固体の電池ということから、全固体となる。 利点は、電解質が水溶液であったりゲル状であったりする現状では、電解質が蒸発したり、分解したり、液漏れや発火、劣化などを起こす可能性があるが、無機物の固体を使う全固体式であれば、それらの懸念を解決できる可能性がある。 また、固体であることによって、バッテリーを車載するうえで、液体の電解質が偏るなどの懸念も払拭され、つねに安定した性能を発揮し、車両に搭載する際の自由度が増すことへの期待もある。要は、縦でも横でも、自由に置けるということだ。 次に、正負極の電極間をイオンが高速移動することが期待されるので、充放電性能が向上する。かつて、固体の電解質はイオンの移動速度が遅いとされたが、東京工業大学の菅野教授らにより、液体より早く固体のなかを移動するイオンの発見があり、今日の開発競争がはじまったとされている。 そのほか、耐熱性も高く、これまで以上のエネルギー密度をもつ電極材料を容易に使えるようになる。 構造的には、表裏に正極と負極を設定できるバイポーラ型にも適しているとされ、これによって容量の拡大も見込めるだろう。
#バッテリー