ボディ構造の変遷
現代のクルマの車体は、そのほとんどがモノコック構造を採用する。
モノコック構造とは、箱の形をした一体構造で、1枚の板や紙だけでは薄く弱くても、箱にすることでしっかりしたつくりになることから生まれた。クルマの車体も、箱状に組み立てることで全体をしっかりした強さにできる。
それが当たり前の現代だが、かつてはフレームと呼ぶ梯子状の土台構造があり、その上に客室などの車体を載せる手法でクルマはつくられていた。フレームには、エンジンを載せ、サスペンションなどを取り付け、クルマにかかるさまざまな力を受け止めていた。上屋となる客室や荷室などは、自由に形を設計できる。
エンジン自動車が誕生して以後、当時はコーチビルダーと呼ばれる職種があり、その職人たちはフレームに載せる客室を専門で製造していた。元の発想は、馬車の時代に遡る。
クルマの走行性能が馬車を超えて高まっていくと、それにあわせて頑丈なフレーム構造を採る必要が出てきた。だが単に頑丈につくったのではフレームが重くなる。そこで、頑丈さと軽さを両立したモノコック構造が生まれた。
モノコック構造でも、エンジンを載せたりサスペンションを取り付けたりと、さまざまな力がかかる床部分は、より頑丈にする必要がある。そこでモノコック構造とはいえ、基礎となる土台部分を頑丈にしたプラットフォームという考えが広がる。
プラットフォームには、構造をみるとあたかもかつてのフレームのように補強が入っている。補強があることでさまざまな入力に耐え、客室と一体となったモノコック構造全体の剛性も高め、同時に衝突した際の衝撃吸収や客室保護など総合的な性能も得られるようになる。
コンバートEVという考え方
プラットフォームは、日本語では車台といわれる。クルマの土台というわけだ。これまではエンジン車に最適なプラットフォーム設計がなされ、進化してきた。ところが電気自動車(EV)になると、車載する部品の形や大きさ、重さなどが変わってくる。エンジン車用のままでは不都合が出るようになった。
それでもエンジン車からEVへの転換が進む過渡期には、両方に使えるプラットフォームで生産効率を高めようとした。
EVといってもどれもが一様ではなく、エンジン車を改造した“コンバートEV”という考え方がある。
たとえば日本EVクラブは、創立した1990年代前半にまだ市販EVがなかったので、エンジン車を改造してEVをつくった。エンジン車からエンジンや燃料タンクを降ろし、排気管を外し、それらに替えて、モーターを積み、バッテリーや電気制御機器を車載する。こうすることで、EVはできあがる。
自動車メーカーも、同じように当初は量産車ベースのコンバートEVを立ち上げることが多かった。そのほうが、エンジン車もEVも両方売ることができるからだ。生産工場では混流製造ラインを工夫し、どちらの車種でも生産できるようにした。しかしそれは、EVをつくるうえで必ずしも合理的ではない。
ホンダはかつて、EVと燃料電池車(FCEV)とプラグインハイブリッド車(PHEV)の3車種を、ひとつの車体でまかなおうと「クラリティ」というクルマを開発した。ひとつの設計による車体で、3車種を製造できれば合理的だと考えたのだ。しかし、出来上がった3車種をみると、いずれも無駄がみられた。EVではエンジンルームに隙間が多く、FCEVでは水素タンクを車載するため荷室が狭くなり、PHEVはもっとも車載部品点数が多いので、うまく収まった様子だった。3車種に適合できる車体を設計したが、部品点数の多いPHEVを優先せざるをえなかったようだ。
この試行錯誤で、専用設計の重要さをホンダは確認したのだろう。そして、ホンダ-eという専用設計のEVを市販した。
それでもなお、EV専用車とコンバートEVは混在する。EVの選択肢が豊富な日産を例にすれば、EV専用はリーフとアリアで、広義のコンバートEVは軽自動車のサクラだ。そのサクラも、エンジン車のデイズやルークスを開発する初期段階から、将来発売を目指したサクラを想定しての設計だったという。